Computer Science > Information Theory
[Submitted on 31 Aug 2021 (v1), last revised 11 Mar 2024 (this version, v3)]
Title:Deep DNA Storage: Scalable and Robust DNA Storage via Coding Theory and Deep Learning
View PDFAbstract:DNA-based storage is an emerging technology that enables digital information to be archived in DNA molecules. This method enjoys major advantages over magnetic and optical storage solutions such as exceptional information density, enhanced data durability, and negligible power consumption to maintain data integrity. To access the data, an information retrieval process is employed, where some of the main bottlenecks are the scalability and accuracy, which have a natural tradeoff between the two. Here we show a modular and holistic approach that combines Deep Neural Networks (DNN) trained on simulated data, Tensor-Product (TP) based Error-Correcting Codes (ECC), and a safety margin mechanism into a single coherent pipeline. We demonstrated our solution on 3.1MB of information using two different sequencing technologies. Our work improves upon the current leading solutions by up to x3200 increase in speed, 40% improvement in accuracy, and offers a code rate of 1.6 bits per base in a high noise regime. In a broader sense, our work shows a viable path to commercial DNA storage solutions hindered by current information retrieval processes.
Submission history
From: Daniella Bar-Lev [view email][v1] Tue, 31 Aug 2021 18:21:20 UTC (916 KB)
[v2] Fri, 5 Nov 2021 15:56:58 UTC (943 KB)
[v3] Mon, 11 Mar 2024 18:11:50 UTC (7,124 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.