Computer Science > Computer Science and Game Theory
[Submitted on 1 Sep 2021]
Title:Fairness based Multi-Preference Resource Allocation in Decentralised Open Markets
View PDFAbstract:In this work, we focus on resource allocation in a decentralised open market. In decentralised open markets consists of multiple vendors and multiple dynamically-arriving buyers, thus makes the market complex and dynamic. Because, in these markets, negotiations among vendors and buyers take place over multiple conflicting issues such as price, scalability, robustness, delay, etc. As a result, optimising the resource allocation in such open markets becomes directly dependent on two key decisions, which are; incorporating a different kind of buyers' preferences, and fairness based vendor elicitation strategy. Towards this end, in this work, we propose a three-step resource allocation approach that employs a reverse-auction paradigm. At the first step, priority label is attached to each bidding vendor based on the proposed priority mechanism. Then, at the second step, the preference score is calculated for all the different kinds of preferences of the buyers. Finally, at the third step, based on the priority label of the vendor and the preference score winner is determined. Finally, we compare the proposed approach with two state-of-the-art resource pricing and allocation strategies. The experimental results show that the proposed approach outperforms the other two resource allocation approaches in terms of the independent utilities of buyers and the overall utility of the open market.
Current browse context:
cs.GT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.