Computer Science > Computation and Language
[Submitted on 1 Sep 2021 (v1), last revised 11 Nov 2021 (this version, v2)]
Title:Exploring deep learning methods for recognizing rare diseases and their clinical manifestations from texts
View PDFAbstract:Although rare diseases are characterized by low prevalence, approximately 300 million people are affected by a rare disease. The early and accurate diagnosis of these conditions is a major challenge for general practitioners, who do not have enough knowledge to identify them. In addition to this, rare diseases usually show a wide variety of manifestations, which might make the diagnosis even more difficult. A delayed diagnosis can negatively affect the patient's life. Therefore, there is an urgent need to increase the scientific and medical knowledge about rare diseases. Natural Language Processing (NLP) and Deep Learning can help to extract relevant information about rare diseases to facilitate their diagnosis and treatments. The paper explores the use of several deep learning techniques such as Bidirectional Long Short Term Memory (BiLSTM) networks or deep contextualized word representations based on Bidirectional Encoder Representations from Transformers (BERT) to recognize rare diseases and their clinical manifestations (signs and symptoms) in the RareDis corpus. This corpus contains more than 5,000 rare diseases and almost 6,000 clinical manifestations. BioBERT, a domain-specific language representation based on BERT and trained on biomedical corpora, obtains the best results. In particular, this model obtains an F1-score of 85.2% for rare diseases, outperforming all the other models.
Submission history
From: Isabel Segura-Bedmar [view email][v1] Wed, 1 Sep 2021 12:35:26 UTC (2,030 KB)
[v2] Thu, 11 Nov 2021 13:00:01 UTC (290 KB)
Current browse context:
cs.CL
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.