Computer Science > Information Theory
[Submitted on 1 Sep 2021]
Title:A Novel ISAC Transmission Framework based on Spatially-Spread Orthogonal Time Frequency Space Modulation
View PDFAbstract:In this paper, we propose a novel integrated sensing and communication (ISAC) transmission framework based on the spatially-spread orthogonal time frequency space (SS-OTFS) modulation by considering the fact that communication channel strengths cannot be directly obtained from radar sensing. We first propose the concept of SS-OTFS modulation, where the key novelty is the angular domain discretization enabled by the spatial-spreading/de-spreading. This discretization gives rise to simple and insightful effective models for both radar sensing and communication, which result in simplified designs for the related estimation and detection problems. In particular, we design simple beam tracking, angle estimation, and power allocation schemes for radar sensing, by utilizing the special structure of the effective radar sensing matrix. Meanwhile, we provide a detailed analysis on the pair-wise error probability (PEP) for communication, which unveils the key conditions for both precoding and power allocation designs. Based on those conditions, we design a symbol-wise precoding scheme for communication based only on the delay, Doppler, and angle estimates from radar sensing, without the a priori knowledge of the communication channel fading coefficients, and also introduce the power allocation for communication. Furthermore, we notice that radar sensing and communication requires different power allocations. Therefore, we discuss the performances of both the radar sensing and communication with different power allocations and show that the power allocation should be designed leaning towards radar sensing in practical scenarios. The effectiveness of the proposed ISAC transmission framework is verified by our numerical results, which also agree with our analysis and discussions.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.