Computer Science > Information Theory
[Submitted on 1 Sep 2021]
Title:On the Existence of the Augustin Mean
View PDFAbstract:The existence of a unique Augustin mean and its invariance under the Augustin operator are established for arbitrary input distributions with finite Augustin information for channels with countably generated output $\sigma$-algebras. The existence is established by representing the conditional Rényi divergence as a lower semicontinuous and convex functional in an appropriately chosen uniformly convex space and then invoking the Banach--Saks property in conjunction with the lower semicontinuity and the convexity. A new family of operators is proposed to establish the invariance of the Augustin mean under the Augustin operator for orders greater than one. Some members of this new family strictly decrease the conditional Rényi divergence, when applied to the second argument of the divergence, unless the second argument is a fixed point of the Augustin operator.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.