High Energy Physics - Phenomenology
[Submitted on 1 Sep 2021 (v1), last revised 15 Mar 2022 (this version, v2)]
Title:The Breakdown of Resummed Perturbation Theory at High Energies
View PDFAbstract:Calculations of high-energy processes involving the production of a large number of particles in weakly-coupled quantum field theories have previously signaled the need for novel non-perturbative behavior or even new physical phenomena. In some scenarios, already tree-level computations may enter the regime of large-order perturbation theory and therefore require a careful investigation. We demonstrate that in scalar quantum field theories with a unique global minimum, where suitably resummed perturbative expansions are expected to capture all relevant physical effects, perturbation theory may still suffer from severe shortcomings in the high-energy regime. As an example, we consider the computation of multiparticle threshold amplitudes of the form $1 \to n$ in $\varphi^6$ theory with a positive mass term, and show that they may violate unitarity of the quantum theory for large $n$, even after the resummation of all leading-$n$ quantum corrections. We further argue that this is a generic feature of scalar field theories with higher-order self-interactions beyond $\varphi^4$, thereby rendering the latter unique with respect to its high-energy behavior.
Submission history
From: Sebastian Schenk [view email][v1] Wed, 1 Sep 2021 18:00:02 UTC (35 KB)
[v2] Tue, 15 Mar 2022 15:54:45 UTC (47 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.