Computer Science > Machine Learning
[Submitted on 12 Aug 2021]
Title:Process parameter optimization of Friction Stir Welding on 6061AA using Supervised Machine Learning Regression-based Algorithms
View PDFAbstract:The highest strength-to-weight ratio criterion has fascinated curiosity increasingly in virtually all areas where heft reduction is indispensable. Lightweight materials and their joining processes are also a recent point of research demands in the manufacturing industries. Friction Stir Welding (FSW) is one of the recent advancements for joining materials without adding any third material (filler rod) and joining below the melting point of the parent material. The process is widely used for joining similar and dissimilar metals, especially lightweight non-ferrous materials like aluminum, copper, and magnesium alloys. This paper presents verdicts of optimum process parameters on attaining enhanced mechanical properties of the weld joint. The experiment was conducted on a 5 mm 6061 aluminum alloy sheet. Process parameters; tool material, rotational speed, traverse speed, and axial forces were utilized. Mechanical properties of the weld joint are examined employing a tensile test, and the maximum joint strength efficiency was reached 94.2%. Supervised Machine Learning based Regression algorithms such as Decision Trees, Random Forest, and Gradient Boosting Algorithm were used. The results showed that the Random Forest algorithm yielded highest coefficient of determination value of 0.926 which means it gives a best fit in comparison to other algorithms.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.