Physics > Medical Physics
[Submitted on 2 Sep 2021 (v1), last revised 8 Sep 2021 (this version, v2)]
Title:Anatomical-Guided Attention Enhances Unsupervised PET Image Denoising Performance
View PDFAbstract:Although supervised convolutional neural networks (CNNs) often outperform conventional alternatives for denoising positron emission tomography (PET) images, they require many low- and high-quality reference PET image pairs. Herein, we propose an unsupervised 3D PET image denoising method based on an anatomical information-guided attention mechanism. The proposed magnetic resonance-guided deep decoder (MR-GDD) utilizes the spatial details and semantic features of MR-guidance image more effectively by introducing encoder-decoder and deep decoder subnetworks. Moreover, the specific shapes and patterns of the guidance image do not affect the denoised PET image, because the guidance image is input to the network through an attention gate. In a Monte Carlo simulation of [$^{18}$F]fluoro-2-deoxy-D-glucose (FDG), the proposed method achieved the highest peak signal-to-noise ratio and structural similarity (27.92 $\pm$ 0.44 dB/0.886 $\pm$ 0.007), as compared with Gaussian filtering (26.68 $\pm$ 0.10 dB/0.807 $\pm$ 0.004), image guided filtering (27.40 $\pm$ 0.11 dB/0.849 $\pm$ 0.003), deep image prior (DIP) (24.22 $\pm$ 0.43 dB/0.737 $\pm$ 0.017), and MR-DIP (27.65 $\pm$ 0.42 dB/0.879 $\pm$ 0.007). Furthermore, we experimentally visualized the behavior of the optimization process, which is often unknown in unsupervised CNN-based restoration problems. For preclinical (using [$^{18}$F]FDG and [$^{11}$C]raclopride) and clinical (using [$^{18}$F]florbetapir) studies, the proposed method demonstrates state-of-the-art denoising performance while retaining spatial resolution and quantitative accuracy, despite using a common network architecture for various noisy PET images with 1/10th of the full counts. These results suggest that the proposed MR-GDD can reduce PET scan times and PET tracer doses considerably without impacting patients.
Submission history
From: Fumio Hashimoto [view email][v1] Thu, 2 Sep 2021 09:27:07 UTC (2,100 KB)
[v2] Wed, 8 Sep 2021 01:53:01 UTC (2,311 KB)
Current browse context:
physics.med-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.