Computer Science > Data Structures and Algorithms
[Submitted on 2 Sep 2021]
Title:Optimization and Sampling Under Continuous Symmetry: Examples and Lie Theory
View PDFAbstract:In the last few years, the notion of symmetry has provided a powerful and essential lens to view several optimization or sampling problems that arise in areas such as theoretical computer science, statistics, machine learning, quantum inference, and privacy. Here, we present two examples of nonconvex problems in optimization and sampling where continuous symmetries play -- implicitly or explicitly -- a key role in the development of efficient algorithms. These examples rely on deep and hidden connections between nonconvex symmetric manifolds and convex polytopes, and are heavily generalizable. To formulate and understand these generalizations, we then present an introduction to Lie theory -- an indispensable mathematical toolkit for capturing and working with continuous symmetries. We first present the basics of Lie groups, Lie algebras, and the adjoint actions associated with them, and we also mention the classification theorem for Lie algebras. Subsequently, we present Kostant's convexity theorem and show how it allows us to reduce linear optimization problems over orbits of Lie groups to linear optimization problems over polytopes. Finally, we present the Harish-Chandra and the Harish-Chandra--Itzykson--Zuber (HCIZ) formulas, which convert partition functions (integrals) over Lie groups into sums over the corresponding (discrete) Weyl groups, enabling efficient sampling algorithms.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.