Nonlinear Sciences > Chaotic Dynamics
[Submitted on 3 Sep 2021 (v1), last revised 4 Jan 2022 (this version, v3)]
Title:Lyapunov spectrum scaling for classical many-body dynamics close to integrability
View PDFAbstract:We propose a novel framework to characterize the thermalization of many-body dynamical systems close to integrable limits using the scaling properties of the full Lyapunov spectrum. We use a classical unitary map model to investigate macroscopic weakly nonintegrable dynamics beyond the limits set by the KAM regime. We perform our analysis in two fundamentally distinct long-range and short-range integrable limits which stem from the type of nonintegrable perturbations. Long-range limits result in a single parameter scaling of the Lyapunov spectrum, with the inverse largest Lyapunov exponent being the only diverging control parameter and the rescaled spectrum approaching an analytical function. Short-range limits result in a dramatic slowing down of thermalization which manifests through the rescaled Lyapunov spectrum approaching a non-analytic function. An additional diverging length scale controls the exponential suppression of all Lyapunov exponents relative to the largest one.
Submission history
From: Merab Malishava [view email][v1] Fri, 3 Sep 2021 08:09:25 UTC (1,173 KB)
[v2] Mon, 6 Sep 2021 07:03:26 UTC (1,769 KB)
[v3] Tue, 4 Jan 2022 09:49:43 UTC (1,178 KB)
Current browse context:
nlin.CD
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.