Statistics > Applications
[Submitted on 3 Sep 2021 (v1), last revised 17 Aug 2022 (this version, v2)]
Title:Frequency-Severity Experience Rating based on Latent Markovian Risk Profiles
View PDFAbstract:Bonus-Malus Systems traditionally consider a customer's number of claims irrespective of their sizes, even though these components are dependent in practice. We propose a novel joint experience rating approach based on latent Markovian risk profiles to allow for a positive or negative individual frequency-severity dependence. The latent profiles evolve over time in a Hidden Markov Model to capture updates in a customer's claims experience, making claim counts and sizes conditionally independent. We show that the resulting risk premia lead to a dynamic, claims experience-weighted mixture of standard credibility premia. The proposed approach is applied to a Dutch automobile insurance portfolio and identifies customer risk profiles with distinctive claiming behavior. These profiles, in turn, enable us to better distinguish between customer risks.
Submission history
From: Robert Verschuren [view email][v1] Fri, 3 Sep 2021 10:03:40 UTC (5,916 KB)
[v2] Wed, 17 Aug 2022 10:28:05 UTC (8,984 KB)
Current browse context:
stat.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.