High Energy Physics - Phenomenology
[Submitted on 3 Sep 2021]
Title:First indication on self-similarity of strangeness production in $Au+Au$ collisions at RHIC: Search for signature of phase transition in nuclear matter
View PDFAbstract:New results of analysis of $K^0_S-$meson spectra measured over a wide range of energy $\sqrt {s_{NN}}=7.7-200$ GeV and centrality in $Au+Au$ collisions by the STAR Collaboration at RHIC using the $z$-scaling approach are presented. Indication on self-similarity of fractal structure of nuclei and fragmentation processes with $K^0_S$ probe is demonstrated. The energy loss as a function of the collision energy, centrality and transverse momentum of the inclusive strange meson is estimated.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.