Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Sep 2021]
Title:Using Topological Framework for the Design of Activation Function and Model Pruning in Deep Neural Networks
View PDFAbstract:Success of deep neural networks in diverse tasks across domains of computer vision, speech recognition and natural language processing, has necessitated understanding the dynamics of training process and also working of trained models. Two independent contributions of this paper are 1) Novel activation function for faster training convergence 2) Systematic pruning of filters of models trained irrespective of activation function. We analyze the topological transformation of the space of training samples as it gets transformed by each successive layer during training, by changing the activation function. The impact of changing activation function on the convergence during training is reported for the task of binary classification. A novel activation function aimed at faster convergence for classification tasks is proposed. Here, Betti numbers are used to quantify topological complexity of data. Results of experiments on popular synthetic binary classification datasets with large Betti numbers(>150) using MLPs are reported. Results show that the proposed activation function results in faster convergence requiring fewer epochs by a factor of 1.5 to 2, since Betti numbers reduce faster across layers with the proposed activation function. The proposed methodology was verified on benchmark image datasets: fashion MNIST, CIFAR-10 and cat-vs-dog images, using CNNs. Based on empirical results, we propose a novel method for pruning a trained model. The trained model was pruned by eliminating filters that transform data to a topological space with large Betti numbers. All filters with Betti numbers greater than 300 were removed from each layer without significant reduction in accuracy. This resulted in faster prediction time and reduced memory size of the model.
Submission history
From: Sunil Kumar Vengalil [view email][v1] Fri, 3 Sep 2021 14:58:17 UTC (1,974 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.