Computer Science > Computer Vision and Pattern Recognition
[Submitted on 3 Sep 2021 (v1), last revised 25 Oct 2021 (this version, v5)]
Title:A realistic approach to generate masked faces applied on two novel masked face recognition data sets
View PDFAbstract:The COVID-19 pandemic raises the problem of adapting face recognition systems to the new reality, where people may wear surgical masks to cover their noses and mouths. Traditional data sets (e.g., CelebA, CASIA-WebFace) used for training these systems were released before the pandemic, so they now seem unsuited due to the lack of examples of people wearing masks. We propose a method for enhancing data sets containing faces without masks by creating synthetic masks and overlaying them on faces in the original images. Our method relies on SparkAR Studio, a developer program made by Facebook that is used to create Instagram face filters. In our approach, we use 9 masks of different colors, shapes and fabrics. We employ our method to generate a number of 445,446 (90%) samples of masks for the CASIA-WebFace data set and 196,254 (96.8%) masks for the CelebA data set, releasing the mask images at this https URL. We show that our method produces significantly more realistic training examples of masks overlaid on faces by asking volunteers to qualitatively compare it to other methods or data sets designed for the same task. We also demonstrate the usefulness of our method by evaluating state-of-the-art face recognition systems (FaceNet, VGG-face, ArcFace) trained on our enhanced data sets and showing that they outperform equivalent systems trained on original data sets (containing faces without masks) or competing data sets (containing masks generated by related methods), when the test benchmarks contain masked faces.
Submission history
From: Radu Tudor Ionescu [view email][v1] Fri, 3 Sep 2021 22:33:55 UTC (10,554 KB)
[v2] Wed, 13 Oct 2021 06:29:43 UTC (19,567 KB)
[v3] Sat, 16 Oct 2021 18:54:22 UTC (19,567 KB)
[v4] Tue, 19 Oct 2021 16:02:28 UTC (19,567 KB)
[v5] Mon, 25 Oct 2021 14:56:56 UTC (19,567 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.