Computer Science > Machine Learning
[Submitted on 4 Sep 2021]
Title:MLCTR: A Fast Scalable Coupled Tensor Completion Based on Multi-Layer Non-Linear Matrix Factorization
View PDFAbstract:Firms earning prediction plays a vital role in investment decisions, dividends expectation, and share price. It often involves multiple tensor-compatible datasets with non-linear multi-way relationships, spatiotemporal structures, and different levels of sparsity. Current non-linear tensor completion algorithms tend to learn noisy embedding and incur overfitting. This paper focuses on the embedding learning aspect of the tensor completion problem and proposes a new multi-layer neural network architecture for tensor factorization and completion (MLCTR). The network architecture entails multiple advantages: a series of low-rank matrix factorizations (MF) building blocks to minimize overfitting, interleaved transfer functions in each layer for non-linearity, and by-pass connections to reduce the gradient diminishing problem and increase the depths of neural networks. Furthermore, the model employs Stochastic Gradient Descent(SGD) based optimization for fast convergence in training. Our algorithm is highly efficient for imputing missing values in the EPS data. Experiments confirm that our strategy of incorporating non-linearity in factor matrices demonstrates impressive performance in embedding learning and end-to-end tensor models, and outperforms approaches with non-linearity in the phase of reconstructing tensors from factor matrices.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.