Computer Science > Machine Learning
[Submitted on 4 Sep 2021]
Title:Customer 360-degree Insights in Predicting Chronic Diabetes
View PDFAbstract:Chronic diseases such as diabetes are quite prevalent in the world and are responsible for a significant number of deaths per year. In addition, treatments for such chronic diseases account for a high healthcare cost. However, research has shown that diabetes can be proactively managed and prevented while lowering these healthcare costs. We have mined a sample of ten million customers' 360-degree data representing the state of Texas, USA, with attributes current as of late 2018. The sample received from a market research data vendor has over 1000 customer attributes consisting of demography, lifestyle, and in some cases self-reported chronic conditions. In this study, we have developed a classification model to predict chronic diabetes with an accuracy of 80%. We demonstrate a use case where a large volume of 360-degree customer data can be useful to predict and hence proactively prevent chronic diseases such as diabetes.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.