Statistics > Machine Learning
[Submitted on 5 Sep 2021]
Title:Scalable Feature Selection for (Multitask) Gradient Boosted Trees
View PDFAbstract:Gradient Boosted Decision Trees (GBDTs) are widely used for building ranking and relevance models in search and recommendation. Considerations such as latency and interpretability dictate the use of as few features as possible to train these models. Feature selection in GBDT models typically involves heuristically ranking the features by importance and selecting the top few, or by performing a full backward feature elimination routine. On-the-fly feature selection methods proposed previously scale suboptimally with the number of features, which can be daunting in high dimensional settings. We develop a scalable forward feature selection variant for GBDT, via a novel group testing procedure that works well in high dimensions, and enjoys favorable theoretical performance and computational guarantees. We show via extensive experiments on both public and proprietary datasets that the proposed method offers significant speedups in training time, while being as competitive as existing GBDT methods in terms of model performance metrics. We also extend the method to the multitask setting, allowing the practitioner to select common features across tasks, as well as selecting task-specific features.
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.