Computer Science > Information Theory
[Submitted on 5 Sep 2021 (v1), last revised 9 Sep 2021 (this version, v2)]
Title:Linear complexity over ${\mathbb{F}_{q}}$ and 2-adic complexity of a class of binary generalized cyclotomic sequences with low-value autocorrelation
View PDFAbstract:A class of binary sequences with period $2p$ is constructed using generalized cyclotomic classes, and their linear complexity, minimal polynomial over ${\mathbb{F}_{q}}$ as well as 2-adic complexity are determined using Gauss period and group ring theory. The results show that the linear complexity of these sequences attains the maximum when $p\equiv \pm 1(\bmod~8)$ and is equal to {$p$+1} when $p\equiv \pm 3(\bmod~8)$ over extension field. Moreover, the 2-adic complexity of these sequences is maximum. According to Berlekamp-Massey(B-M) algorithm and the rational approximation algorithm(RAA), these sequences have quite good cryptographyic properties in the aspect of linear complexity and 2-adic complexity.
Submission history
From: Xilin Han [view email][v1] Sun, 5 Sep 2021 15:06:07 UTC (458 KB)
[v2] Thu, 9 Sep 2021 06:58:47 UTC (46 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.