Condensed Matter > Statistical Mechanics
[Submitted on 5 Sep 2021]
Title:Interplay between scales in the nonlocal FKPP equation
View PDFAbstract:We consider a generalization of the FKPP equation for the evolution of the spatial density of a single-species population where all the terms are nonlocal. That is, the spatial extension of each process (growth, competition and diffusion) is ruled by an influence function, with a characteristic shape and range of action. Our purpose is to investigate the interference between these different components in pattern formation. We show that, while competition is the leading process behind patterns, the other two can act either constructively or destructively. For instance, diffusion that is commonly known to smooth out the concentration field can actually favor pattern formation depending on the shape and range of the dispersal kernel. The results are supported by analytical calculations accompanied by numerical simulations.
Current browse context:
cond-mat.stat-mech
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.