Mathematics > Optimization and Control
[Submitted on 5 Sep 2021]
Title:Implementation of MPC in embedded systems using first order methods
View PDFAbstract:This Ph.D. dissertation contains results in two different but related fields: the implementation of model predictive control (MPC) in embedded systems using first order methods, and restart schemes for accelerated first order methods (AFOM). We start by presenting three novel restart schemes for AFOM. These schemes can improve the convergence of the AFOM by suppressing the undesirable oscillations that they are prone to present. The schemes we develop have theoretical guarantees and do not require knowledge of difficult-to-obtain parameters of the optimization problem. Next, we present sparse solvers for various MPC formulations which take advantage of the structures of the optimization problems. The solvers have been made available in an open-source toolbox for Matlab called SPCIES (this https URL). Finally, we present a novel MPC formulation that displays a larger domain of attraction and better performance than other MPC formulations, especially when using small prediction horizons. This, along with its recursive feasibility and asymptotic stability, makes it especially suitable for its implementation in embedded systems.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.