Computer Science > Machine Learning
[Submitted on 5 Sep 2021 (v1), last revised 20 Feb 2022 (this version, v2)]
Title:Urban Fire Station Location Planning using Predicted Demand and Service Quality Index
View PDFAbstract:In this article, we propose a systematic approach for fire station location planning. We develop machine learning models, based on Random Forest and Extreme Gradient Boosting, for demand prediction and utilize the models further to define a generalized index to measure quality of fire service in urban settings. Our model is built upon spatial data collected from multiple different sources. Efficacy of proper facility planning depends on choice of candidates where fire stations can be located along with existing stations, if any. Also, the travel time from these candidates to demand locations need to be taken care of to maintain fire safety standard. Here, we propose a travel time based clustering technique to identify suitable candidates. Finally, we develop an optimization problem to select best locations to install new fire stations. Our optimization problem is built upon maximum coverage problem, based on integer programming. We further develop a two-stage stochastic optimization model to characterize the confidence in our decision outcome. We present a detailed experimental study of our proposed approach in collaboration with city of Victoria Fire Department, MN, USA. Our demand prediction model achieves true positive rate of 80% and false positive rate of 20% approximately. We aid Victoria Fire Department to select a location for a new fire station using our approach. We present detailed results on improvement statistics by locating a new facility, as suggested by our methodology, in the city of Victoria.
Submission history
From: Arnab Dey [view email][v1] Sun, 5 Sep 2021 19:59:26 UTC (2,563 KB)
[v2] Sun, 20 Feb 2022 19:40:36 UTC (3,083 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.