Condensed Matter > Materials Science
[Submitted on 6 Sep 2021]
Title:Data-Driven Learning of 3-Point Correlation Functions as Microstructure Representations
View PDFAbstract:This paper considers the open challenge of identifying complete, concise, and explainable quantitative microstructure representations for disordered heterogeneous material systems. Completeness and conciseness have been achieved through existing data-driven methods, e.g., deep generative models, which, however, do not provide mathematically explainable latent representations. This study investigates representations composed of three-point correlation functions, which are a special type of spatial convolutions. We show that a variety of microstructures can be characterized by a concise subset of three-point correlations, and the identification of such subsets can be achieved by Bayesian optimization. Lastly, we show that the proposed representation can directly be used to compute material properties based on the effective medium theory.
Current browse context:
cond-mat.mtrl-sci
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.