Computer Science > Computer Vision and Pattern Recognition
This paper has been withdrawn by Bing Su
[Submitted on 6 Sep 2021 (v1), last revised 22 Aug 2023 (this version, v2)]
Title:Information Theory-Guided Heuristic Progressive Multi-View Coding
No PDF available, click to view other formatsAbstract:Multi-view representation learning captures comprehensive information from multiple views of a shared context. Recent works intuitively apply contrastive learning (CL) to learn representations, regarded as a pairwise manner, which is still scalable: view-specific noise is not filtered in learning view-shared representations; the fake negative pairs, where the negative terms are actually within the same class as the positive, and the real negative pairs are coequally treated; and evenly measuring the similarities between terms might interfere with optimization. Importantly, few works research the theoretical framework of generalized self-supervised multi-view learning, especially for more than two views. To this end, we rethink the existing multi-view learning paradigm from the information theoretical perspective and then propose a novel information theoretical framework for generalized multi-view learning. Guided by it, we build a multi-view coding method with a three-tier progressive architecture, namely Information theory-guided heuristic Progressive Multi-view Coding (IPMC). In the distribution-tier, IPMC aligns the distribution between views to reduce view-specific noise. In the set-tier, IPMC builds self-adjusted pools for contrasting, which utilizes a view filter to adaptively modify the pools. Lastly, in the instance-tier, we adopt a designed unified loss to learn discriminative representations and reduce the gradient interference. Theoretically and empirically, we demonstrate the superiority of IPMC over state-of-the-art methods.
Submission history
From: Bing Su [view email][v1] Mon, 6 Sep 2021 10:32:24 UTC (13,037 KB)
[v2] Tue, 22 Aug 2023 03:55:42 UTC (1 KB) (withdrawn)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.