Computer Science > Machine Learning
[Submitted on 6 Sep 2021]
Title:EsmamDS: A more diverse exceptional survival model mining approach
View PDFAbstract:A variety of works in the literature strive to uncover the factors associated with survival behaviour. However, the computational tools to provide such information are global models designed to predict if or when a (survival) event will occur. When approaching the problem of explaining differences in survival behaviour, those approaches rely on (assumptions of) predictive features followed by risk stratification. In other words, they lack the ability to discover new information on factors related to survival. In contrast, we approach such a problem from the perspective of descriptive supervised pattern mining to discover local patterns associated with different survival behaviours. Hence, we introduce the EsmamDS algorithm: an Exceptional Model Mining framework to provide straightforward characterisations of subgroups presenting unusual survival models -- given by the Kaplan-Meier estimates. This work builds on the Esmam algorithm to address the problem of pattern redundancy and provide a more informative and diverse characterisation of survival behaviour.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.