Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 6 Sep 2021 (v1), last revised 17 Nov 2021 (this version, v2)]
Title:Dual camera snapshot hyperspectral imaging system via physics informed learning
View PDFAbstract:We consider using the system's optical imaging process with convolutional neural networks (CNNs) to solve the snapshot hyperspectral imaging reconstruction problem, which uses a dual-camera system to capture the three-dimensional hyperspectral images (HSIs) in a compressed way. Various methods using CNNs have been developed in recent years to reconstruct HSIs, but most of the supervised deep learning methods aimed to fit a brute-force mapping relationship between the captured compressed image and standard HSIs. Thus, the learned mapping would be invalid when the observation data deviate from the training data. Especially, we usually don't have ground truth in real-life scenarios. In this paper, we present a self-supervised dual-camera equipment with an untrained physics-informed CNNs framework. Extensive simulation and experimental results show that our method without training can be adapted to a wide imaging environment with good performance. Furthermore, compared with the training-based methods, our system can be constantly fine-tuned and self-improved in real-life scenarios.
Submission history
From: Hui Xie [view email][v1] Mon, 6 Sep 2021 13:39:54 UTC (4,866 KB)
[v2] Wed, 17 Nov 2021 09:26:46 UTC (1,634 KB)
Current browse context:
eess.IV
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.