Computer Science > Machine Learning
[Submitted on 6 Sep 2021 (v1), last revised 15 Nov 2021 (this version, v2)]
Title:gen2Out: Detecting and Ranking Generalized Anomalies
View PDFAbstract:In a cloud of m-dimensional data points, how would we spot, as well as rank, both single-point- as well as group- anomalies? We are the first to generalize anomaly detection in two dimensions: The first dimension is that we handle both point-anomalies, as well as group-anomalies, under a unified view -- we shall refer to them as generalized anomalies. The second dimension is that gen2Out not only detects, but also ranks, anomalies in suspiciousness order. Detection, and ranking, of anomalies has numerous applications: For example, in EEG recordings of an epileptic patient, an anomaly may indicate a seizure; in computer network traffic data, it may signify a power failure, or a DoS/DDoS attack. We start by setting some reasonable axioms; surprisingly, none of the earlier methods pass all the axioms. Our main contribution is the gen2Out algorithm, that has the following desirable properties: (a) Principled and Sound anomaly scoring that obeys the axioms for detectors, (b) Doubly-general in that it detects, as well as ranks generalized anomaly -- both point- and group-anomalies, (c) Scalable, it is fast and scalable, linear on input size. (d) Effective, experiments on real-world epileptic recordings (200GB) demonstrate effectiveness of gen2Out as confirmed by clinicians. Experiments on 27 real-world benchmark datasets show that gen2Out detects ground truth groups, matches or outperforms point-anomaly baseline algorithms on accuracy, with no competition for group-anomalies and requires about 2 minutes for 1 million data points on a stock machine.
Submission history
From: Meng-Chieh Lee [view email][v1] Mon, 6 Sep 2021 19:29:08 UTC (30,496 KB)
[v2] Mon, 15 Nov 2021 21:22:15 UTC (30,496 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.