Computer Science > Computer Vision and Pattern Recognition
[Submitted on 6 Sep 2021 (v1), last revised 22 Mar 2022 (this version, v3)]
Title:Zero-Shot Out-of-Distribution Detection Based on the Pre-trained Model CLIP
View PDFAbstract:In an out-of-distribution (OOD) detection problem, samples of known classes(also called in-distribution classes) are used to train a special classifier. In testing, the classifier can (1) classify the test samples of known classes to their respective classes and also (2) detect samples that do not belong to any of the known classes (i.e., they belong to some unknown or OOD classes). This paper studies the problem of zero-shot out-of-distribution(OOD) detection, which still performs the same two tasks in testing but has no training except using the given known class names. This paper proposes a novel yet simple method (called ZOC) to solve the problem. ZOC builds on top of the recent advances in zero-shot classification through multi-modal representation learning. It first extends the pre-trained language-vision model CLIP by training a text-based image description generator on top of CLIP. In testing, it uses the extended model to generate candidate unknown class names for each test sample and computes a confidence score based on both the known class names and candidate unknown class names for zero-shot OOD detection. Experimental results on 5 benchmark datasets for OOD detection demonstrate that ZOC outperforms the baselines by a large margin.
Submission history
From: Sepideh Esmaeilpour [view email][v1] Mon, 6 Sep 2021 21:27:43 UTC (1,856 KB)
[v2] Fri, 10 Sep 2021 20:22:15 UTC (2,188 KB)
[v3] Tue, 22 Mar 2022 17:53:38 UTC (3,158 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.