Computer Science > Artificial Intelligence
[Submitted on 7 Sep 2021]
Title:HMSG: Heterogeneous Graph Neural Network based on Metapath Subgraph Learning
View PDFAbstract:Many real-world data can be represented as heterogeneous graphs with different types of nodes and connections. Heterogeneous graph neural network model aims to embed nodes or subgraphs into low-dimensional vector space for various downstream tasks such as node classification, link prediction, etc. Although several models were proposed recently, they either only aggregate information from the same type of neighbors, or just indiscriminately treat homogeneous and heterogeneous neighbors in the same way. Based on these observations, we propose a new heterogeneous graph neural network model named HMSG to comprehensively capture structural, semantic and attribute information from both homogeneous and heterogeneous neighbors. Specifically, we first decompose the heterogeneous graph into multiple metapath-based homogeneous and heterogeneous subgraphs, and each subgraph associates specific semantic and structural information. Then message aggregation methods are applied to each subgraph independently, so that information can be learned in a more targeted and efficient manner. Through a type-specific attribute transformation, node attributes can also be transferred among different types of nodes. Finally, we fuse information from subgraphs together to get the complete representation. Extensive experiments on several datasets for node classification, node clustering and link prediction tasks show that HMSG achieves the best performance in all evaluation metrics than state-of-the-art baselines.
Current browse context:
cs.AI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.