Computer Science > Information Theory
[Submitted on 7 Sep 2021]
Title:Exploiting Simultaneous Low-Rank and Sparsity in Delay-Angular Domain for Millimeter-Wave/Terahertz Wideband Massive Access
View PDFAbstract:Millimeter-wave (mmW)/Terahertz (THz) wideband communication employing a large-scale antenna array is a promising technique of the sixth-generation (6G) wireless network for realizing massive machine-type communications (mMTC). To reduce the access latency and the signaling overhead, we design a grant-free random access scheme based on joint active device detection and channel estimation (JADCE) for mmW/THz wideband massive access. In particular, by exploiting the simultaneously sparse and low-rank structure of mmW/THz channels with spreads in the delay-angular domain, we propose two multi-rank aware JADCE algorithms via applying the quotient geometry of product of complex rank-$L$ matrices with the number of clusters $L$. It is proved that the proposed algorithms require a smaller number of measurements than the currently known bounds on measurements of conventional simultaneously sparse and low-rank recovery algorithms. Statistical analysis also shows that the proposed algorithms can linearly converge to the ground truth with low computational complexity. Finally, extensive simulation results confirm the superiority of the proposed algorithms in terms of the accuracy of both activity detection and channel estimation.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.