Computer Science > Networking and Internet Architecture
[Submitted on 7 Sep 2021 (v1), last revised 2 Feb 2023 (this version, v5)]
Title:LEAF: Navigating Concept Drift in Cellular Networks
View PDFAbstract:Operational networks commonly rely on machine learning models for many tasks, including detecting anomalies, inferring application performance, and forecasting demand. Yet, model accuracy can degrade due to concept drift, whereby the relationship between the features and the target to be predicted changes. Mitigating concept drift is an essential part of operationalizing machine learning models in general, but is of particular importance in networking's highly dynamic deployment environments. In this paper, we first characterize concept drift in a large cellular network for a major metropolitan area in the United States. We find that concept drift occurs across many important key performance indicators (KPIs), independently of the model, training set size, and time interval -- thus necessitating practical approaches to detect, explain, and mitigate it. We then show that frequent model retraining with newly available data is not sufficient to mitigate concept drift, and can even degrade model accuracy further. Finally, we develop a new methodology for concept drift mitigation, Local Error Approximation of Features (LEAF). LEAF works by detecting drift; explaining the features and time intervals that contribute the most to drift; and mitigates it using forgetting and over-sampling. We evaluate LEAF against industry-standard mitigation approaches (notably, periodic retraining) with more than four years of cellular KPI data. Our initial tests with a major cellular provider in the US show that LEAF consistently outperforms periodic and triggered retraining on complex, real-world data while reducing costly retraining operations.
Submission history
From: Shinan Liu [view email][v1] Tue, 7 Sep 2021 11:57:07 UTC (15,740 KB)
[v2] Sat, 12 Feb 2022 14:54:49 UTC (39,889 KB)
[v3] Tue, 15 Feb 2022 16:21:04 UTC (39,889 KB)
[v4] Thu, 11 Aug 2022 19:33:23 UTC (37,448 KB)
[v5] Thu, 2 Feb 2023 22:22:41 UTC (37,561 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.