Mathematics > Optimization and Control
[Submitted on 7 Sep 2021]
Title:$\mathcal{N}$IPM-MPC: An Efficient Null-Space Method Based Interior-Point Method for Model Predictive Control
View PDFAbstract:Linear Model Predictive Control (MPC) is a widely used method to control systems with linear dynamics. Efficient interior-point methods have been proposed which leverage the block diagonal structure of the quadratic program (QP) resulting from the receding horizon control formulation. However, they require two matrix factorizations per interior-point method iteration, one each for the computation of the dual and the primal. Recently though an interior point method based on the null-space method has been proposed which requires only a single decomposition per iteration. While the then used null-space basis leads to dense null-space projections, in this work we propose a sparse null-space basis which preserves the block diagonal structure of the MPC matrices. Since it is based on the inverse of the transfer matrix we introduce the notion of so-called virtual controls which enables just that invertibility. A combination of the reduced number of factorizations and omission of the evaluation of the dual lets our solver outperform others in terms of computational speed by an increasing margin dependent on the number of state and control variables.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.