Electrical Engineering and Systems Science > Image and Video Processing
[Submitted on 8 Sep 2021]
Title:SSEGEP: Small SEGment Emphasized Performance evaluation metric for medical image segmentation
View PDFAbstract:Automatic image segmentation is a critical component of medical image analysis, and hence quantifying segmentation performance is crucial. Challenges in medical image segmentation are mainly due to spatial variations of regions to be segmented and imbalance in distribution of classes. Commonly used metrics treat all detected pixels, indiscriminately. However, pixels in smaller segments must be treated differently from pixels in larger segments, as detection of smaller ones aid in early treatment of associated disease and are also easier to miss. To address this, we propose a novel evaluation metric for segmentation performance, emphasizing smaller segments, by assigning higher weightage to smaller segment pixels. Weighted false positives are also considered in deriving the new metric named, "SSEGEP"(Small SEGment Emphasized Performance evaluation metric), (range : 0(Bad) to 1(Good)). The experiments were performed on diverse anatomies(eye, liver, pancreas and breast) from publicly available datasets to show applicability of the proposed metric across different imaging techniques. Mean opinion score (MOS) and statistical significance testing is used to quantify the relevance of proposed approach. Across 33 fundus images, where the largest exudate is 1.41%, and the smallest is 0.0002% of the image, the proposed metric is 30% closer to MOS, as compared to Dice Similarity Coefficient (DSC). Statistical significance testing resulted in promising p-value of order 10^{-18} with SSEGEP for hepatic tumor compared to DSC. The proposed metric is found to perform better for the images having multiple segments for a single label.
Current browse context:
eess.IV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.