Computer Science > Machine Learning
[Submitted on 8 Sep 2021]
Title:Conservative Policy Construction Using Variational Autoencoders for Logged Data with Missing Values
View PDFAbstract:In high-stakes applications of data-driven decision making like healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. Firstly, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Secondly, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this paper, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when $\Xt$, a degraded version of $\Xb$ with missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the \textit{conservative strategy} where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy we need to estimate posterior distribution $p(\Xb|\Xt)$, we use variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAE) which are designed to capture the underlying structure of features with missing values.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.