Computer Science > Machine Learning
[Submitted on 8 Sep 2021 (v1), last revised 5 Apr 2022 (this version, v2)]
Title:FedZKT: Zero-Shot Knowledge Transfer towards Resource-Constrained Federated Learning with Heterogeneous On-Device Models
View PDFAbstract:Federated learning enables multiple distributed devices to collaboratively learn a shared prediction model without centralizing their on-device data. Most of the current algorithms require comparable individual efforts for local training with the same structure and size of on-device models, which, however, impedes participation from resource-constrained devices. Given the widespread yet heterogeneous devices nowadays, in this paper, we propose an innovative federated learning framework with heterogeneous on-device models through Zero-shot Knowledge Transfer, named by FedZKT. Specifically, FedZKT allows devices to independently determine the on-device models upon their local resources. To achieve knowledge transfer across these heterogeneous on-device models, a zero-shot distillation approach is designed without any prerequisites for private on-device data, which is contrary to certain prior research based on a public dataset or a pre-trained data generator. Moreover, this compute-intensive distillation task is assigned to the server to allow the participation of resource-constrained devices, where a generator is adversarially learned with the ensemble of collected on-device models. The distilled central knowledge is then sent back in the form of the corresponding on-device model parameters, which can be easily absorbed on the device side. Extensive experimental studies demonstrate the effectiveness and robustness of FedZKT towards on-device knowledge agnostic, on-device model heterogeneity, and other challenging federated learning scenarios, such as heterogeneous on-device data and straggler effects.
Submission history
From: Xiaoyong Yuan [view email][v1] Wed, 8 Sep 2021 16:53:07 UTC (1,575 KB)
[v2] Tue, 5 Apr 2022 19:45:53 UTC (2,296 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.