Electrical Engineering and Systems Science > Signal Processing
[Submitted on 8 Sep 2021 (v1), last revised 25 Oct 2022 (this version, v3)]
Title:Bayesian Over-The-Air Computation
View PDFAbstract:As an important piece of the multi-tier computing architecture for future wireless networks, over-the-air computation (OAC) enables efficient function computation in multiple-access edge computing, where a fusion center aims to compute a function of the data distributed at edge devices. Existing OAC relies exclusively on the maximum likelihood (ML) estimation at the fusion center to recover the arithmetic sum of the transmitted signals from different devices. ML estimation, however, is much susceptible to noise. In particular, in the misaligned OAC where there are channel misalignments among received signals, ML estimation suffers from severe error propagation and noise enhancement. To address these challenges, this paper puts forth a Bayesian approach by letting each edge device transmit two pieces of statistical information to the fusion center such that Bayesian estimators can be devised to tackle the misalignments. Numerical and simulation results verify that, 1) For the aligned and synchronous OAC, our linear minimum mean squared error (LMMSE) estimator significantly outperforms the ML estimator. In the low signal-to-noise ratio (SNR) regime, the LMMSE estimator reduces the mean squared error (MSE) by at least 6 dB; in the high SNR regime, the LMMSE estimator lowers the error floor of MSE by 86.4%; 2) For the asynchronous OAC, our LMMSE and sum-product maximum a posteriori (SP-MAP) estimators are on an equal footing in terms of the MSE performance, and are significantly better than the ML estimator. Moreover, the SP-MAP estimator is computationally efficient, the complexity of which grows linearly with the packet length.
Submission history
From: Yulin Shao [view email][v1] Wed, 8 Sep 2021 16:58:52 UTC (2,520 KB)
[v2] Thu, 26 May 2022 09:51:40 UTC (5,549 KB)
[v3] Tue, 25 Oct 2022 15:25:35 UTC (5,428 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.