Computer Science > Machine Learning
[Submitted on 8 Sep 2021 (v1), last revised 15 Sep 2021 (this version, v3)]
Title:Highly Scalable and Provably Accurate Classification in Poincare Balls
View PDFAbstract:Many high-dimensional and large-volume data sets of practical relevance have hierarchical structures induced by trees, graphs or time series. Such data sets are hard to process in Euclidean spaces and one often seeks low-dimensional embeddings in other space forms to perform required learning tasks. For hierarchical data, the space of choice is a hyperbolic space since it guarantees low-distortion embeddings for tree-like structures. Unfortunately, the geometry of hyperbolic spaces has properties not encountered in Euclidean spaces that pose challenges when trying to rigorously analyze algorithmic solutions. Here, for the first time, we establish a unified framework for learning scalable and simple hyperbolic linear classifiers with provable performance guarantees. The gist of our approach is to focus on Poincaré ball models and formulate the classification problems using tangent space formalisms. Our results include a new hyperbolic and second-order perceptron algorithm as well as an efficient and highly accurate convex optimization setup for hyperbolic support vector machine classifiers. All algorithms provably converge and are highly scalable as they have complexities comparable to those of their Euclidean counterparts. Their performance accuracies on synthetic data sets comprising millions of points, as well as on complex real-world data sets such as single-cell RNA-seq expression measurements, CIFAR10, Fashion-MNIST and mini-ImageNet.
Submission history
From: Eli Chien [view email][v1] Wed, 8 Sep 2021 16:59:39 UTC (3,838 KB)
[v2] Thu, 9 Sep 2021 15:24:50 UTC (3,839 KB)
[v3] Wed, 15 Sep 2021 17:39:58 UTC (3,839 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.