Computer Science > Information Theory
[Submitted on 8 Sep 2021]
Title:Computational Polarization: An Information-theoretic Method for Resilient Computing
View PDFAbstract:We introduce an error resilient distributed computing method based on an extension of the channel polarization phenomenon to distributed algorithms. The method leverages an algorithmic split operation that transforms two identical compute nodes to slow and fast workers, which parallels the channel split operation in Polar Codes. This operation preserves the average runtime, analogous to the conservation of Shannon capacity in channel polarization. By leveraging a recursive construction in a similar spirit to the Fast Fourier Transform, this method synthesizes virtual compute nodes with dispersed return time distributions, which we call computational polarization. We show that the runtime distributions form a functional martingale processes, identify their limiting distributions in closed-form expressions together with non-asymptotic convergence rates, and prove strong convergence results in Banach spaces. We provide an information-theoretic lower bound on the overall runtime of any coded computation method and show that the computational polarization approach asymptotically achieves the optimal runtime for computing linear functions. An important advantage is the near linear time decoding procedure, which is significantly cheaper than Maximum Distance Separable codes.
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.