Computer Science > Machine Learning
[Submitted on 7 Sep 2021]
Title:Sensitive Samples Revisited: Detecting Neural Network Attacks Using Constraint Solvers
View PDFAbstract:Neural Networks are used today in numerous security- and safety-relevant domains and are, as such, a popular target of attacks that subvert their classification capabilities, by manipulating the network parameters. Prior work has introduced sensitive samples -- inputs highly sensitive to parameter changes -- to detect such manipulations, and proposed a gradient ascent-based approach to compute them. In this paper we offer an alternative, using symbolic constraint solvers. We model the network and a formal specification of a sensitive sample in the language of the solver and ask for a solution. This approach supports a rich class of queries, corresponding, for instance, to the presence of certain types of attacks. Unlike earlier techniques, our approach does not depend on convex search domains, or on the suitability of a starting point for the search. We address the performance limitations of constraint solvers by partitioning the search space for the solver, and exploring the partitions according to a balanced schedule that still retains completeness of the search. We demonstrate the impact of the use of solvers in terms of functionality and search efficiency, using a case study for the detection of Trojan attacks on Neural Networks.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 7 Sep 2021 01:34:02 UTC (142 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.