Computer Science > Machine Learning
[Submitted on 8 Sep 2021 (v1), last revised 16 Nov 2022 (this version, v3)]
Title:Membership Inference Attacks Against Temporally Correlated Data in Deep Reinforcement Learning
View PDFAbstract:While significant research advances have been made in the field of deep reinforcement learning, there have been no concrete adversarial attack strategies in literature tailored for studying the vulnerability of deep reinforcement learning algorithms to membership inference attacks. In such attacking systems, the adversary targets the set of collected input data on which the deep reinforcement learning algorithm has been trained. To address this gap, we propose an adversarial attack framework designed for testing the vulnerability of a state-of-the-art deep reinforcement learning algorithm to a membership inference attack. In particular, we design a series of experiments to investigate the impact of temporal correlation, which naturally exists in reinforcement learning training data, on the probability of information leakage. Moreover, we compare the performance of \emph{collective} and \emph{individual} membership attacks against the deep reinforcement learning algorithm. Experimental results show that the proposed adversarial attack framework is surprisingly effective at inferring data with an accuracy exceeding $84\%$ in individual and $97\%$ in collective modes in three different continuous control Mujoco tasks, which raises serious privacy concerns in this regard. Finally, we show that the learning state of the reinforcement learning algorithm influences the level of privacy breaches significantly.
Submission history
From: Susan Amin [view email][v1] Wed, 8 Sep 2021 23:44:57 UTC (1,468 KB)
[v2] Tue, 12 Oct 2021 21:21:54 UTC (1,471 KB)
[v3] Wed, 16 Nov 2022 03:22:18 UTC (2,570 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.