Computer Science > Machine Learning
[Submitted on 9 Sep 2021]
Title:Bag of Tricks for Optimizing Transformer Efficiency
View PDFAbstract:Improving Transformer efficiency has become increasingly attractive recently. A wide range of methods has been proposed, e.g., pruning, quantization, new architectures and etc. But these methods are either sophisticated in implementation or dependent on hardware. In this paper, we show that the efficiency of Transformer can be improved by combining some simple and hardware-agnostic methods, including tuning hyper-parameters, better design choices and training strategies. On the WMT news translation tasks, we improve the inference efficiency of a strong Transformer system by 3.80X on CPU and 2.52X on GPU. The code is publicly available at this https URL.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.