High Energy Physics - Phenomenology
[Submitted on 9 Sep 2021 (v1), last revised 10 Nov 2022 (this version, v5)]
Title:Poynting vector controversy in axion modified electrodynamics
View PDFAbstract:The most sensitive haloscopes that search for axion dark matter through the two photon electromagnetic anomaly, convert axions into photons through the mixing of axions with a large DC magnetic field. In this work we apply Poynting theorem to the resulting axion modified electrodynamics and identify two possible Poynting vectors, one similar to the Abraham Poynting vector and the other to the Minkowski Poynting vector in electrodynamics. The latter picks up the extra non-conservative terms while the former does not. To understand the source of energy conversion and power flow in the detection systems, we apply the two Poynting theorems to axion modified electrodynamics, for both the resonant cavity and broadband low-mass axion detectors. We show that both Poynting theorems give the same sensitivity for a resonant cavity axion haloscope, but predict markedly different sensitivity for a low-mass broadband capacitive haloscope. Hence we ask the question, can understanding which one is the correct one for axion dark matter detection, be considered under the framework of the Abraham-Minkowski controversy? In reality, this should be confirmed by experiment when the axion is detected. However, many electrodynamic experiments have ruled in favour of the Minkowski Poynting vector when considering the canonical momentum in dielectric media. In light of this, we show that the axion modified Minkowski Poynting vector should indeed be taken seriously for sensitivity calculation for low-mass axion haloscope detectors in the quasi static limit, and predict orders of magnitude better sensitivity than the Abraham Poynting vector equivalent.
Submission history
From: Michael Edmund Tobar [view email][v1] Thu, 9 Sep 2021 06:30:40 UTC (722 KB)
[v2] Sun, 24 Oct 2021 04:53:35 UTC (722 KB)
[v3] Sun, 30 Jan 2022 01:56:08 UTC (725 KB)
[v4] Thu, 10 Feb 2022 22:41:45 UTC (724 KB)
[v5] Thu, 10 Nov 2022 05:43:16 UTC (725 KB)
Current browse context:
hep-ph
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.