Computer Science > Machine Learning
[Submitted on 9 Sep 2021]
Title:TimeTraveler: Reinforcement Learning for Temporal Knowledge Graph Forecasting
View PDFAbstract:Temporal knowledge graph (TKG) reasoning is a crucial task that has gained increasing research interest in recent years. Most existing methods focus on reasoning at past timestamps to complete the missing facts, and there are only a few works of reasoning on known TKGs to forecast future facts. Compared with the completion task, the forecasting task is more difficult that faces two main challenges: (1) how to effectively model the time information to handle future timestamps? (2) how to make inductive inference to handle previously unseen entities that emerge over time? To address these challenges, we propose the first reinforcement learning method for forecasting. Specifically, the agent travels on historical knowledge graph snapshots to search for the answer. Our method defines a relative time encoding function to capture the timespan information, and we design a novel time-shaped reward based on Dirichlet distribution to guide the model learning. Furthermore, we propose a novel representation method for unseen entities to improve the inductive inference ability of the model. We evaluate our method for this link prediction task at future timestamps. Extensive experiments on four benchmark datasets demonstrate substantial performance improvement meanwhile with higher explainability, less calculation, and fewer parameters when compared with existing state-of-the-art methods.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.