Computer Science > Machine Learning
[Submitted on 9 Sep 2021 (v1), last revised 16 Feb 2022 (this version, v2)]
Title:ECQ$^{\text{x}}$: Explainability-Driven Quantization for Low-Bit and Sparse DNNs
View PDFAbstract:The remarkable success of deep neural networks (DNNs) in various applications is accompanied by a significant increase in network parameters and arithmetic operations. Such increases in memory and computational demands make deep learning prohibitive for resource-constrained hardware platforms such as mobile devices. Recent efforts aim to reduce these overheads, while preserving model performance as much as possible, and include parameter reduction techniques, parameter quantization, and lossless compression techniques.
In this chapter, we develop and describe a novel quantization paradigm for DNNs: Our method leverages concepts of explainable AI (XAI) and concepts of information theory: Instead of assigning weight values based on their distances to the quantization clusters, the assignment function additionally considers weight relevances obtained from Layer-wise Relevance Propagation (LRP) and the information content of the clusters (entropy optimization). The ultimate goal is to preserve the most relevant weights in quantization clusters of highest information content.
Experimental results show that this novel Entropy-Constrained and XAI-adjusted Quantization (ECQ$^{\text{x}}$) method generates ultra low-precision (2-5 bit) and simultaneously sparse neural networks while maintaining or even improving model performance. Due to reduced parameter precision and high number of zero-elements, the rendered networks are highly compressible in terms of file size, up to $103\times$ compared to the full-precision unquantized DNN model. Our approach was evaluated on different types of models and datasets (including Google Speech Commands, CIFAR-10 and Pascal VOC) and compared with previous work.
Submission history
From: Daniel Becking [view email][v1] Thu, 9 Sep 2021 12:57:06 UTC (770 KB)
[v2] Wed, 16 Feb 2022 20:41:48 UTC (882 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.