Computer Science > Machine Learning
[Submitted on 9 Sep 2021]
Title:On the use of Wasserstein metric in topological clustering of distributional data
View PDFAbstract:This paper deals with a clustering algorithm for histogram data based on a Self-Organizing Map (SOM) learning. It combines a dimension reduction by SOM and the clustering of the data in a reduced space. Related to the kind of data, a suitable dissimilarity measure between distributions is introduced: the $L_2$ Wasserstein distance. Moreover, the number of clusters is not fixed in advance but it is automatically found according to a local data density estimation in the original space. Applications on synthetic and real data sets corroborate the proposed strategy.
Submission history
From: Guénaël Cabanes Dr. [view email][v1] Thu, 9 Sep 2021 14:27:15 UTC (392 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.