Computer Science > Human-Computer Interaction
[Submitted on 9 Sep 2021 (v1), last revised 1 Jul 2023 (this version, v2)]
Title:Truth Discovery in Sequence Labels from Crowds
View PDFAbstract:Annotation quality and quantity positively affect the learning performance of sequence labeling, a vital task in Natural Language Processing. Hiring domain experts to annotate a corpus is very costly in terms of money and time. Crowdsourcing platforms, such as Amazon Mechanical Turk (AMT), have been deployed to assist in this purpose. However, the annotations collected this way are prone to human errors due to the lack of expertise of the crowd workers. Existing literature in annotation aggregation assumes that annotations are independent and thus faces challenges when handling the sequential label aggregation tasks with complex dependencies. To conquer the challenges, we propose an optimization-based method that infers the ground truth labels using annotations provided by workers for sequential labeling tasks. The proposed Aggregation method for Sequential Labels from Crowds ($AggSLC$) jointly considers the characteristics of sequential labeling tasks, workers' reliabilities, and advanced machine learning techniques. Theoretical analysis on the algorithm's convergence further demonstrates that the proposed $AggSLC$ halts after a finite number of iterations. We evaluate $AggSLC$ on different crowdsourced datasets for Named Entity Recognition (NER) tasks and Information Extraction tasks in biomedical (PICO), as well as a simulated dataset. Our results show that the proposed method outperforms the state-of-the-art aggregation methods. To achieve insights into the framework, we study the effectiveness of $AggSLC$'s components through ablation studies.
Submission history
From: Adithya Kulkarni [view email][v1] Thu, 9 Sep 2021 19:12:13 UTC (972 KB)
[v2] Sat, 1 Jul 2023 23:38:34 UTC (675 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.