Computer Science > Machine Learning
[Submitted on 9 Sep 2021 (v1), last revised 3 Feb 2023 (this version, v2)]
Title:Feature-based Individual Fairness in k-Clustering
View PDFAbstract:Ensuring fairness in machine learning algorithms is a challenging and essential task. We consider the problem of clustering a set of points while satisfying fairness constraints. While there have been several attempts to capture group fairness in the $k$-clustering problem, fairness at an individual level is relatively less explored. We introduce a new notion of individual fairness in $k$-clustering based on features not necessarily used for clustering. We show that this problem is NP-hard and does not admit a constant factor approximation. Therefore, we design a randomized algorithm that guarantees approximation both in terms of minimizing the clustering distance objective and individual fairness under natural restrictions on the distance metric and fairness constraints. Finally, our experimental results against six competing baselines validate that our algorithm produces individually fairer clusters than the fairest baseline by 12.5% on average while also being less costly in terms of the clustering objective than the best baseline by 34.5% on average.
Submission history
From: Sourav Medya [view email][v1] Thu, 9 Sep 2021 20:42:02 UTC (363 KB)
[v2] Fri, 3 Feb 2023 22:28:48 UTC (2,295 KB)
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.