Computer Science > Machine Learning
[Submitted on 9 Sep 2021 (v1), last revised 1 Jun 2022 (this version, v3)]
Title:SanitAIs: Unsupervised Data Augmentation to Sanitize Trojaned Neural Networks
View PDFAbstract:Self-supervised learning (SSL) methods have resulted in broad improvements to neural network performance by leveraging large, untapped collections of unlabeled data to learn generalized underlying structure. In this work, we harness unsupervised data augmentation (UDA), an SSL technique, to mitigate backdoor or Trojan attacks on deep neural networks. We show that UDA is more effective at removing trojans than current state-of-the-art methods for both feature space and point triggers, over a range of model architectures, trojans, and data quantities provided for trojan removal. These results demonstrate that UDA is both an effective and practical approach to mitigating the effects of backdoors on neural networks.
Submission history
From: Kiran Karra [view email][v1] Thu, 9 Sep 2021 21:29:12 UTC (306 KB)
[v2] Tue, 14 Sep 2021 20:24:47 UTC (183 KB)
[v3] Wed, 1 Jun 2022 21:34:48 UTC (735 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.