Computer Science > Cryptography and Security
[Submitted on 10 Sep 2021 (v1), last revised 13 Sep 2021 (this version, v2)]
Title:Utilizing Shannon's Entropy to Create Privacy Aware Architectures
View PDFAbstract:Privacy is an individual choice to determine which personal details can be collected, used and shared. Individual consent and transparency are the core tenets for earning customers trust and this motivates the organizations to adopt privacy enhancing practices while creating the systems. The goal of a privacy-aware design is to protect information in a way that does not increase an adversary's existing knowledge about an individual beyond what is permissible. This becomes critical when these data elements can be linked with the wealth of auxiliary information available outside the system to identify an individual. Privacy regulations around the world provide directives to protect individual privacy but are generally complex and vague, making their translation into actionable and technical privacy-friendly architectures challenging. In this paper, we utilize Shannon's Entropy to create an objective metric that can help simplify the state-of-the-art Privacy Design Strategies proposed in the literature and aid our key technical design decisions to create privacy aware architectures.
Submission history
From: Abhinav Palia [view email][v1] Fri, 10 Sep 2021 03:31:45 UTC (272 KB)
[v2] Mon, 13 Sep 2021 04:32:23 UTC (272 KB)
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.