Computer Science > Machine Learning
[Submitted on 10 Sep 2021 (v1), last revised 18 Dec 2023 (this version, v3)]
Title:On the Compression of Neural Networks Using $\ell_0$-Norm Regularization and Weight Pruning
View PDF HTML (experimental)Abstract:Despite the growing availability of high-capacity computational platforms, implementation complexity still has been a great concern for the real-world deployment of neural networks. This concern is not exclusively due to the huge costs of state-of-the-art network architectures, but also due to the recent push towards edge intelligence and the use of neural networks in embedded applications. In this context, network compression techniques have been gaining interest due to their ability for reducing deployment costs while keeping inference accuracy at satisfactory levels. The present paper is dedicated to the development of a novel compression scheme for neural networks. To this end, a new form of $\ell_0$-norm-based regularization is firstly developed, which is capable of inducing strong sparseness in the network during training. Then, targeting the smaller weights of the trained network with pruning techniques, smaller yet highly effective networks can be obtained. The proposed compression scheme also involves the use of $\ell_2$-norm regularization to avoid overfitting as well as fine tuning to improve the performance of the pruned network. Experimental results are presented aiming to show the effectiveness of the proposed scheme as well as to make comparisons with competing approaches.
Submission history
From: Eduardo Batista [view email][v1] Fri, 10 Sep 2021 19:19:42 UTC (486 KB)
[v2] Fri, 17 Jun 2022 12:56:10 UTC (892 KB)
[v3] Mon, 18 Dec 2023 17:53:11 UTC (489 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.