Condensed Matter > Mesoscale and Nanoscale Physics
[Submitted on 10 Sep 2021 (v1), last revised 13 Jun 2022 (this version, v3)]
Title:Anisotropic MagnetoMemristance
View PDFAbstract:In the last decade, nanoscale resistive devices with memory have been the subject of intense study because of their possible use in brain-inspired computing. However, operational endurance is one of the limiting factors in the adoption of such technology. For this reason, we discuss the emergence of current-induced memristance in magnetic materials, known for their durability. We show analytically and numerically that a single ferromagnetic layer can possess GHz memristance, due to a combination of two factors: a current-induced transfer of angular momentum (Zhang-Li torque) and the anisotropic magnetoresistance (AMR). We term the resulting effect the anisotropic magneto-memristance (AMM). We connect the AMM to the topology of the magnetization state, within a simple model of a 1-dimensional annulus-shaped magnetic layer, confirming the analytical results with micromagnetic simulations for permalloy. Our results open a new path towards the realization of single-layer magnetic memristive devices operating at GHz frequencies.
Submission history
From: Francesco Caravelli [view email][v1] Fri, 10 Sep 2021 20:33:24 UTC (2,298 KB)
[v2] Tue, 14 Sep 2021 15:51:06 UTC (2,298 KB)
[v3] Mon, 13 Jun 2022 15:32:34 UTC (4,666 KB)
Current browse context:
cond-mat.mes-hall
Change to browse by:
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.